Intelligent Systems
Note: This research group has relocated.


2023


An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment
An Open-Source Modular Treadmill for Dynamic Force Measurement with Load Dependant Range Adjustment

Sarvestani, A., Ruppert, F., Badri-Spröwitz, A.

2023 (unpublished) Submitted

Abstract
Ground reaction force sensing is one of the key components of gait analysis in legged locomotion research. To measure continuous force data during locomotion, we present a novel compound instrumented treadmill design. The treadmill is 1.7 m long, with a natural frequency of 170 Hz and an adjustable range that can be used for humans and small robots alike. Here, we present the treadmill’s design methodology and characterize it in its natural frequency, noise behavior and real-life performance. Additionally, we apply an ISO 376 norm conform calibration procedure for all spatial force directions and center of pressure position. We achieve a force accuracy of ≤ 5.6 N for the ground reaction forces and ≤ 13 mm in center of pressure position.

arXiv link (url) DOI [BibTex]

2022


no image
Mechanical Design, Development and Testing of Bioinspired Legged Robots for Dynamic Locomotion

Sarvestani, L. A.

Eberhard Karls Universität Tübingen, Tübingen , November 2022 (phdthesis)

DOI [BibTex]

2022

DOI [BibTex]


Data of: Gastrocnemius and Power Amplifier Soleus Spring-Tendons Achieve Fast Human-like Walking in a Bipedal Robot
Data of: Gastrocnemius and Power Amplifier Soleus Spring-Tendons Achieve Fast Human-like Walking in a Bipedal Robot

Kiss, B., Gonen, E. C., Mo, A., Buchmann, A., Renjewski, D., Badri-Spröwitz, A.

July 2022 (misc)

Abstract
Data, code, and CAD for IROS 2022 publication Gastrocnemius and Power Amplifier Soleus Spring-Tendons Achieve Fast Human-like Walking in a Bipedal Robot

link (url) DOI [BibTex]

2020


Towards Hybrid Active and Passive Compliant Mechanisms in Legged Robots
Towards Hybrid Active and Passive Compliant Mechanisms in Legged Robots

Milad Shafiee Ashtiani, A. A. S., Badri-Sproewitz, A.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, October 2020 (poster) Accepted

Abstract Poster [BibTex]

2020

Abstract Poster [BibTex]


VP above or below? A new perspective on the story of the virtual point
VP above or below? A new perspective on the story of the virtual point

Drama, Ö., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
The spring inverted pendulum model with an extended trunk (TSLIP) is widely used to investigate the postural stability in bipedal locomotion [1, 2]. The challenge of the model is to define a hip torque that generates feasible gait patterns while stabilizing the floating trunk. The virtual point (VP) method is proposed as a simplified solution, where the hip torque is coupled to the passive compliant leg force via a virtual point. This geometric coupling is based on the assumption that the instantaneous ground reaction forces of the stance phase (GRF) intersect at a single virtual point.

Poster Abstract link (url) [BibTex]

Poster Abstract link (url) [BibTex]


Viscous Damping in Legged Locomotion
Viscous Damping in Legged Locomotion

Mo, A., Izzi, F., Haeufle, D. F. B., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Damping likely plays an essential role in legged animal locomotion, but remains an insufficiently understood mechanism. Intrinsic damping muscle forces can potentially add to the joint torque output during unexpected impacts, stabilise movements, convert the system’s energy, and reject unexpected perturbations.

Abstract Poster link (url) Project Page [BibTex]

Abstract Poster link (url) Project Page [BibTex]


How Quadrupeds Benefit from Lower Leg Passive Elasticity
How Quadrupeds Benefit from Lower Leg Passive Elasticity

Ruppert, F., Badri-Spröwitz, A.

Dynamic Walking, May 2020 (poster)

Abstract
Recently developed and fully actuated, legged robots start showing exciting locomotion capabilities, but rely heavily on high-power actuators, high-frequency sensors, and complex locomotion controllers. The engineering solutions implemented in these legged robots are much different compared to animals. Vertebrate animals share magnitudes slower neurocontrol signal velocities [1] compared to their robot counterparts. Also, animals feature a plethora of cascaded and underactuated passive elastic structures [2].

Abstract Poster link (url) Project Page [BibTex]


Viability in State-Action Space. Connecting Morphology, Control, and Learning
Viability in State-Action Space. Connecting Morphology, Control, and Learning

Heim, S.

Eberhard Karls Universität Tübingen, Tübingen, February 2020 (phdthesis)

DOI [BibTex]

DOI [BibTex]


Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds

Kamska, V., Daley, M., Badri-Spröwitz, A.

Society for Integrative and Comparative Biology Annual Meeting (SICB Annual Meeting 2020), January 2020 (poster)

DOI [BibTex]

DOI [BibTex]

2019


Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot

2018


no image
Gait analysis of running guinea fowls

Bonnet, A.

August 2018 (mastersthesis)

[BibTex]

2018

[BibTex]

2017


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

[BibTex]

2017

[BibTex]

2010


Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion
Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion

Spröwitz, A.

EPFL, Lausanne, Lausanne, 2010 (phdthesis)

DOI [BibTex]

2005


Adaptation of Central Pattern Generators to Preexisting Mechanical Structure
Adaptation of Central Pattern Generators to Preexisting Mechanical Structure

Spröwitz, A.

Technische Universität Ilmenau, Ilmenau, 2005 (mastersthesis)

[BibTex]

2005

[BibTex]