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— Motivation — Research Goal — Key Messages

Animal observations and muscle models || Our goal is to study the effectiveness of
suggest that damping is beneficial for mechanic.:al.datnping on the leg-system total
legged locomotion [1-3]. Legged robots energy dissipation within one drop cycle.

implement virtual damping, while
mechanical damping is often overlooked,
despite its potential advantages. It remains
unclear which type of damping (viscous,
Coulomb friction, etc.) is preferable.

1. Viscous damping is generally
superior to Coulomb friction damping,
and a trade-off exists between energy
efficiency and fast rejection of ground
perturbation.

2. Adjustable = mechanical  dampers
exhibit complex mechanic response
when embedded into real legged
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— Simulation — Hardware Experiment
Work loop components

Total negative work H Coulomb friction J+ Viscous damping +‘\Impac!J
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“Free drop” and “slow drop” to separate dissipated energy components:
Viscous damper 1 (1214H): 150mJ = 60m.) + 60mJ (40%) + 30mJ

? Colomb fricton Viscous damper 2 (1210M): 401mJ = 60rmJ + 311mJ(77%) + 30m.J

damper

F=d, Damper adjustability

—— Spring only : 101 mJ Damping rate
damping min: 395 mJ

damping max: 401 mJ
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perturbation (change in system  energy efficiency. Viscous and

total energy) through viscous  Coulomb  friction ~ damping ) — . . .
and Coulomb friction damping. produce distinct work-oops. Adjustability is desired, but complex to implement.
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