Header logo is


2019


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

Arxiv [BibTex]

2019

Arxiv [BibTex]


Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots

Drama, Ö., Badri-Spröwitz, A.

Proceedings of 2019 IEEE-RAS 19th International Conference on Humanoid Robots, pages: 531-536, IEEE, Humanoids, October 2019 (conference)

Abstract
Creating natural-looking running gaits for humanoid robots is a complex task due to the underactuated degree of freedom in the trunk, which makes the motion planning and control difficult. The research on trunk movements in human locomotion is insufficient, and no formalism is known to transfer human motion patterns onto robots. Related work mostly focuses on the lower extremities, and simplifies the problem by stabilizing the trunk at a fixed angle. In contrast, humans display significant trunk motions that follow the natural dynamics of the gait. In this work, we use a spring-loaded inverted pendulum model with a trunk (TSLIP) together with a virtual point (VP) target to create trunk oscillations and investigate the impact of these movements. We analyze how the VP location and forward speed determine the direction and magnitude of the trunk oscillations. We show that positioning the VP below the center of mass (CoM) can explain the forward trunk pitching observed in human running. The VP below the CoM leads to a synergistic work between the hip and leg, reducing the leg loading. However, it comes at the cost of increased peak hip torque. Our results provide insights for leveraging the trunk motion to redistribute joint loads and potentially improve the energy efficiency in humanoid robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


The positive side of damping
The positive side of damping

Heim, S., Millard, M., Le Mouel, C., Sproewitz, A.

Proceedings of AMAM, The 9th International Symposium on Adaptive Motion of Animals and Machines, August 2019 (conference) Accepted

[BibTex]

[BibTex]


Quantifying the Robustness of Natural Dynamics: a Viability Approach
Quantifying the Robustness of Natural Dynamics: a Viability Approach

Heim, S., Sproewitz, A.

Proceedings of Dynamic Walking , Dynamic Walking , 2019 (conference) Accepted

Submission DW2019 [BibTex]

Submission DW2019 [BibTex]

2018


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

link (url) DOI Project Page [BibTex]

2018

link (url) DOI Project Page [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]

2013


Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot
Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot

Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M. N., Ijspeert, A. J.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 3329-3334, May 2013 (inproceedings)

Abstract
We studied the effect of the control of an active spine versus a fixed spine, on a quadruped robot running in bound gait. Active spine supported actuation led to faster locomotion, with less foot sliding on the ground, and a higher stability to go straight forward. However, we did no observe an improvement of cost of transport of the spine-actuated, faster robot system compared to the rigid spine.

Youtube DOI Project Page [BibTex]

2013

Youtube DOI Project Page [BibTex]


Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion
Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion

Ajallooeian, M., Pouya, S., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), pages: 3321-3328, IEEE, Karlsruhe, 2013 (inproceedings)

Abstract
We present a modular controller for quadruped locomotion over unperceived rough terrain. Our approach is based on a computational Central Pattern Generator (CPG) model implemented as coupled nonlinear oscillators. Stumbling correction reflex is implemented as a sensory feedback mechanism affecting the CPG. We augment the outputs of the CPG with virtual model control torques responsible for posture control. The control strategy is validated on a 3D forward dynamics simulated quadruped robot platform of about the size and weight of a cat. To demonstrate the capabilities of the proposed approach, we perform locomotion over unperceived uneven terrain and slopes, as well as situations facing external pushes.

DOI [BibTex]

DOI [BibTex]


Gait Optimization for Roombots Modular Robots - Matching Simulation and Reality
Gait Optimization for Roombots Modular Robots - Matching Simulation and Reality

Möckel, R., Yura, N. P., The Nguyen, A., Vespignani, M., Bonardi, S., Pouya, S., Spröwitz, A., van den Kieboom, J., Wilhelm, F., Ijspeert, A. J.

In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3265-3272, IEEE, Tokyo, 2013 (inproceedings)

Abstract
The design of efficient locomotion gaits for robots with many degrees of freedom is challenging and time consuming even if optimization techniques are applied. Control parameters can be found through optimization in two ways: (i) through online optimization where the performance of a robot is measured while trying different control parameters on the actual hardware and (ii) through offline optimization by simulating the robot’s behavior with the help of models of the robot and its environment. In this paper, we present a hybrid optimization method that combines the best properties of online and offline optimization to efficiently find locomotion gaits for arbitrary structures. In comparison to pure online optimization, both the number of experiments using robotic hardware as well as the total time required for finding efficient locomotion gaits get highly reduced by running the major part of the optimization process in simulation using a cluster of processors. The presented example shows that even for robots with a low number of degrees of freedom the time required for optimization can be reduced by a factor of 2.5 to 30, at least, depending on how extensive the search for optimized control parameters should be. Time for hardware experiments becomes minimal. More importantly, gaits that can possibly damage the robotic hardware can be filtered before being tried in hardware. Yet in contrast to pure offline optimization, we reach well matched behavior that allows a direct transfer of locomotion gaits from simulation to hardware. This is because through a meta-optimization we adapt not only the locomotion parameters but also the parameters for simulation models of the robot and environment allowing for a good matching of the robot behavior in simulation and hardware. We validate the proposed hybrid optimization method on a structure composed of two Roombots modules with a total number of six degrees of freedom. Roombots are self-reconfigurable modular robots that can form arbitrary structures with many degrees of freedom through an integrated active connection mechanism.

DOI [BibTex]

DOI [BibTex]


Modular Control of Limit Cycle Locomotion over Unperceived Rough Terrain
Modular Control of Limit Cycle Locomotion over Unperceived Rough Terrain

Ajallooeian, M., Gay, S., Tuleu, A., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pages: 3390-3397, Tokyo, 2013 (inproceedings)

Abstract
We present a general approach to design modular controllers for limit cycle locomotion over unperceived rough terrain. The control strategy uses a Central Pattern Generator (CPG) model implemented as coupled nonlinear oscillators as basis. Stumbling correction and leg extension reflexes are implemented as feedbacks for fast corrections, and model-based posture control mechanisms define feedbacks for continuous corrections. The control strategy is validated on a detailed physics-based simulated model of a compliant quadruped robot, the Oncilla robot. We demonstrate dynamic locomotion with a speed of more than 1.5 BodyLength/s over unperceived uneven terrains, steps, and slopes.

DOI [BibTex]

DOI [BibTex]

2009


Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture
Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture

Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), pages: 4259-4264, IEEE, Kobe, 2009 (inproceedings)

Abstract
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures.

DOI [BibTex]

2009

DOI [BibTex]