Header logo is


2017


Spinal joint compliance and actuation in a simulated bounding quadruped robot
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

link (url) DOI Project Page [BibTex]

2017

link (url) DOI Project Page [BibTex]

2006


Passive compliance for a {RC} servo-controlled bouncing robot
Passive compliance for a RC servo-controlled bouncing robot

Meyer, F., Spröwitz, A., Berthouze, L.

Advanced Robotics, 20(8):953-961, 2006 (article)

Abstract
A novel and low-cost passively compliant mechanism is described that can be used with RC servos to actuate legged robots in tasks involving high dynamic loads such as bouncing. Compliance is achieved by combining visco-elastic material and metal parts. Joint response to dynamic loads is evaluated using real-world experiments and force data are obtained from a Lagrangian analysis of the system. The experimental results demonstrate the applicative potential of this mechanism.

DOI [BibTex]

2006

DOI [BibTex]