Header logo is


2016


no image
On designing an active tail for legged robots: simplifying control via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A. J.

Industrial Robot: An International Journal, 43, pages: 338-346, Emerald Group Publishing Limited, 2016 (article)

Preprint [BibTex]

2016

Preprint [BibTex]


ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot
ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot

Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., Hurst, J.

{The International Journal of Robotics Research}, 35(12):1497-1521, Sage Publications, Inc., Cambridge, MA, 2016 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
On designing an active tail for body-pitch control in legged robots via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A.

In ASSISTIVE ROBOTICS: Proceedings of the 18th International Conference on CLAWAR 2015, pages: 256-264, 2016 (inproceedings)

[BibTex]

[BibTex]

2015


Exciting Engineered Passive Dynamics in a Bipedal Robot
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

link (url) DOI Project Page [BibTex]

2015

link (url) DOI Project Page [BibTex]


Comparing the effect of different spine and leg designs for a small bounding quadruped robot
Comparing the effect of different spine and leg designs for a small bounding quadruped robot

Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A. J.

In Proceedings of ICRA, pages: 3128-3133, Seattle, Washington, USA, 2015 (inproceedings)

Abstract
We present Lynx-robot, a quadruped, modular, compliant machine. It alternately features a directly actuated, single-joint spine design, or an actively supported, passive compliant, multi-joint spine configuration. Both spine con- figurations bend in the sagittal plane. This study aims at characterizing these two, largely different spine concepts, for a bounding gait of a robot with a three segmented, pantograph leg design. An earlier, similar-sized, bounding, quadruped robot named Bobcat with a two-segment leg design and a directly actuated, single-joint spine design serves as a comparison robot, to study and compare the effect of the leg design on speed, while keeping the spine design fixed. Both proposed spine designs (single rotatory and active and multi-joint compliant) reach moderate, self-stable speeds.

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]

2006


Passive compliance for a {RC} servo-controlled bouncing robot
Passive compliance for a RC servo-controlled bouncing robot

Meyer, F., Spröwitz, A., Berthouze, L.

Advanced Robotics, 20(8):953-961, 2006 (article)

Abstract
A novel and low-cost passively compliant mechanism is described that can be used with RC servos to actuate legged robots in tasks involving high dynamic loads such as bouncing. Compliance is achieved by combining visco-elastic material and metal parts. Joint response to dynamic loads is evaluated using real-world experiments and force data are obtained from a Lagrangian analysis of the system. The experimental results demonstrate the applicative potential of this mechanism.

DOI [BibTex]

2006

DOI [BibTex]


Project course "Design of Mechatronic Systems"
Project course "Design of Mechatronic Systems"

Koch, C., Spröwitz, A., Radler, O., Strohla, T.

In IEEE International Conference on Mechatronics, pages: 69-72, IEEE, Budapest, 2006 (inproceedings)

Abstract
The course "Design of Mechatronic Systems" at Technische Universität Ilmenau imparts the systematic procedure of mechatronic design. This paper shows the main features of VDI Guideline 2206, which provides the structured background for students education in mechatronics. Furthermore practical teaching experiences and results from the course are described.

DOI [BibTex]

DOI [BibTex]